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Theory of multiple fracture of fibrous 
composites 
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The theoretical stress-strain behaviour of a composite with a brittle matrix in which the 
fibre-matrix bond remains intact after the matrix has cracked, is described. From a 
consideration of the maximum shear stress at the fibre-matrix interface, the extent of fibre 
debonding and the crack spacing in a partially debonded composite are derived. The 
energetics of cracking and the conditions leading to an enhanced matrix failure strain are 
then discussed and, finally, the crack spacing expected in composites containing fibres 
isotropically arranged in two or in three dimensions is derived for the case of very thin 
and hence very flexible fibres. 

1. Introduction 
In a recent paper Aveston, Cooper, and Kelly [1 ] 
introduced a number of simple ideas which have 
application to understanding the stress-strain 
curve and type of cracking found in reinforced 
cements, plasters and other brittle materials. The 
theory applies to a matrix with a small failure 
strain containing fibres with a much larger 
failure strain and accounts quite well for the 
practical results obtained in a number of systems, 
e.g. for glass reinforced cement [2] and for 
gypsum reinforced with pvc or glass [3, 4]. 

However, the theory as at present developed 
has a number of shortcomings. These are: (1) the 
two components are regarded as being unbonded 
in the sense that there is assumed to be no con- 
nection between the elastic displacements in the 
fibres and in the matrix, and (2) the fibres are all 
aligned parallel to one another and to the 
direction in which the composite is strained. 

It is the purpose of this paper to remove these 
two limitations. The second can be removed for 
the case in which the fibre may be regarded as 
perfectly flexible, and this is the case which we 
treat. The first limitation is very difficult to 
remove in an exact fashion since the problem 
involves cracking of the matrix, which is by 
definition a non-elastic process. Here we present 
an approximate elastic analysis which should 
apply when the shear rigidity of the matrix is 
much less than that of the fibres, and this 
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enables us to make some semi-quantitative 
estimates of the shear stress at the matrix fibre 
interface close to the ends of the fibres. We 
compare the elastic treatment with that for the 
unbonded case, previously reported [1 ]. 

The properties we attempt to predict are the 
density of cracks in the matrix as a function of 
fibre diameter, elastic properties and volume 
fraction, the stress-strain curve of the composite 
and the conditions that should lead to complete 
suppression of cracks in the matrix at its normal 
failure strain. These we treat in turn in Sections 
4, 5 and 8 for aligned fibres. Following this we 
deduce results for the non-aligned fibres. 

2. Load transfer between fibres and 
matrix 

When long strong fibres of breaking s train  E,u 
much larger than the breaking strain of the matrix 
ernu are incorporated into a fibrous comp- 
osite, then cracks in the matrix are restrained 
from opening by the presence of  the fibres. 
Consider aligned fibres and stress applied 
parallel to these. If  the matrix fails at a stress 
ainu, the load carried by the matrix, which is 
ainu Vm per unit area of cross-section, is then 
thrown onto the fibres and provided the breaking 
stress of the fibres afu satisfies the inequality 

Crfu Vf /> Crmu Vm + o" Vf (1) 

where ~' (equal to Ef emu for an elastic matrix) 
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is the load borne by the fibres when the matrix 
breaks, then the fibres will not fail and may be 
further extended, leading to multiple cracking of 
the matrix. 

After the first crack is formed we can consider 
either of two limiting conditions to apply. In the 
first of these, considered in detail by Aveston 
et al [1 ] the matrix and fibres are considered to 
be "unbonded" in the sense that there is no 
connection between the elastic dislpacements 
in the two components, and providing a limiting 
shear stress ~-' is exceeded, the fibres may be 
drawn through the matrix or the matrix may 
slide over the fibre. The second limiting case, 
which we shall treat in this paper, is where the 
matrix remains bonded to the fibre after it has 
cracked and, apart from the deformation 
exactly at the crack surface, remains linearly 
elastic. 

For  both cases the fundamental equation 
governing load transfer between fibres and 
matrix is obtained from a simple force balance 
and is, for discrete fibres of radius r in a continu- 
ous matrix 

dF  2Vf ~- 
- (2) 

dy r 

where dF is the load transferred from fibre to 
matrix in distance dy and ~- is the shear stress 
acting at the interface. 

3. U n b o n d e d  case  
For  the unbonded case ~- is a constant equal to 7~ 
and, after the appearance of the first crack in the 
matrix, continued extension of the specimen will 
lead to the matrix being traversed by a set of 
parallel cracks spaced between x' and 2x' apart 
where x'  is obtained from Equation 2 by inte- 
grating and setting F = ~rau Vm to obtain 

/ 

g m  ~ m u  r 
x ' =  ~ 2~' (3) 

If  the deformation of the fibres is fully elastic 
then the additional stress thrown upon the fibres 
produces a maximum additional strain in the 
fibres of C~emu where ~ = (Em Vm)/(Ef Vf). The 
minimum additional strain in the fibres is zero 
if the crack spacing is 2x' and (~emu)/2 if 
the spacing is x'. The additional strain in the 
compgsite, which is equal to the average 
additional strain in the fibres, thus varies 
between (aem~)/2 and 3/4(~Em~) when cracking 
is complete, provided the breaking strain of the 
matrix is single-valued. Aveston et al [1 ] derive 

these results in detail. It is worth noting in 
passing that the additional strain which occurs 
during cracking is independent of the total 
mlmber of cracks. 

The mean crack spacing will be closer to x' 
than to 2x'. Further extension of the composite 
after cracking is complete results in the fibres 
being stretched further and slipping through the 
blocks of matrix which can take no further share 
of the load, so Young's modulus of the specimen 
will then be equal to Ef Vs. 

4. B o n d e d  case 
For the bonded case ~- in Equation 2 is not 
independent of y. After the first crack has 
occurred in the matrix an additional stress 

Cr~ 
A% = ~ - Cmu Ef (4) 

where cr~ is the applied stress, is placed upon the 
fibres. This additional stress has its maximum 
value Aao at the plane of the matrix crack and  
decays with distance from the crack surface. 
Appendix I contains an approximate elastic 
solution of the problem. 

It is found that 

Act = A~0ex p - ~/~y (5) 
where 

(2GmEe )'~ 1 
dP~ = \El Era Vra] ;'[In(R/r)] § (6) 

where R is the radial distance from the centre of  
the fibre at which the displacement in the matrix 
is equal to the average displacement in the matrix 
(see Appendix 1). The shear stress at the interface 
between the fibres and matrix is given by 

t" 
~- = ~ A% ~,'r e x p ( -  ~,'~ y ) .  (7) 

The shear stress at the interface is, in this case, 
dependent upon the value of Act 0 and on the 
elastic constants and decays rapidly with distance 
y from the crack surface. Since r depends 
inversely on the radius of the fibre, ~" is indepen- 
dent of fibre size. 

From Equations 7 and 2 we can now find the 
load F transferred to the mamx in any distance l 
from the crack surface. Substituting Equation 7 
into Equation 2 and integrating, we have 

g = Vf A%[1 - e x p ( -  ~,'r l)] (8) 

Clearly, if the value of Act 0 is just that due to 
the breaking of the matrix, namely Crmu(Vm/Vf), 
the matrix will never break again and only a 
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Figure 1 Fibre geometry assumed in the derivation of H. 

single crack will result. A small increase in A %  
will, however, result in further cracking into 
blocks of  length between l and 2l, where from 
Equation 8, setting F -- crmu Vm, we find 

1 { O'mu g m l  - l -  x/~ln 1 -  / [%V,j ,  
~mu Vm (9) 

A~~ > - - - P S  

When/[ % is larger than a few times Crmu(Vm/Vr), 
Equation 9 reduces to 

1 O'mu Vm 
l =  0o) 

This equation is identical to Equation 3 with r '  
replaced by (/[%/2)~/~ r, which is shown in 
Section 6 to be equal to the maximum shear stress 
at the interface between the fibre and matrix. 

Values ofq~ depend upon the value assumed for 
R in Equation 6. We will take R as one-half the 
centre-to-centre separation of the fibres, namely 
r[Tr/(2 ~/3 Vt)] ~ for the hexagonal array shown in 
Fig. 1. The values of  ln(R/r) then vary with 
volume fraction as shown in Table I. 

TAB LE I Values of lnD/(2 ~3 Vr)] ~ = 

V~ 0.01 0.05 0.1 0.2 0.3 0.4 
4' 2.25 1.45 1.09 0.76 0.54 0.42 

5. S t r e s s - s t r a i n  c u r v e  
From Equation 9 we can deduce the stress-strain 
curve for the elastically bonded case. The 
additional displacement for the two sides of  a 
single crack is 
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i~ 
2 A 

A V ' =  2 ~Tdy= 
A% ( (1 crmu Vna~'\ (11) 

2 E----~/~ ~1 - A%Vf]  J' 
using Equations 5 and 9. The mean additional 
strain due to l/l cracks per unit length, as a result 
of  an additional fibre stress A%, is then A V' 
times (1/1) or 

/[e _ -- 2/[(1 o ~ l  -- (l  --  O'mu Vm//[CrO Vf)*'~ 

. . . . .  (12) 

which reduces to A%/Ef as A% becomes very 
large and to zero when A% = Crmu Vm/Vf, as it 
should. It  is noteworthy that Equation 12 is 
independent of  the value of q~ and so, as in the 
unbonded case, the additional strain due to 
cracking is independent of  the density of  cracks. 
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Figure 2 Idealized stress-strain curve for Portland cement 
reinforced by 1% by volume of long steel fibres. Broken 
curve assumes fibres are completely unbonded, and the 
full curve that there is complete elastic continuity 
between fibre and matrix. 

Fig. 2 compares the stress-strain curves 
deduced for the bonded and unbonded cases for 
a specimen with the properties of  1% (by 
volume) of  steel in Portland cement. For  the 
sake of  comparison the minimum value of crack 
spacing is taken in both cases. In the bonded case 
a smoothly rising stress-strain curve occurs 
without the additional assumption of a variable 



T H E O R Y  O F  M U L T I P L E  F R A C T U R E  O F  F I B R O U S  C O M P O S I T E S  

matrix strength, an assumption which must be 
made to account for such a rise in the unbonded 
case. In practice the curves would probably not 
be sufficiently different to differentiate between 
the two cases. However, on unloading from any 
strain greater than that necessary to produce the 
first crack, the curve will return to the origin if 
the fibre/matrix bond remains intact. In contrast 
the specimen will retain some permanent set 
either if the bonding is initially frictional (our 
debonded case) or if debonding takes place, after 
the appearance of the first crack but before the 
specimen is unloaded. 

6. Occurrence of debonding 
The elastically bonded case leads, according to 
Equation 9, to a continuous decrease in the 
crack spacing without limit, provided Ae 0 may 
be increased without limit. Such will not occur 
in practice since increase in Act 0 results in an 
increase in ~- and we expect the value of r to be 
limited by the shear strength of the interface, ~'u. 
From Equation 13a of Appendix 1 the maximum 
value of r occurs at the crack surface (y -- 0) 
and is given by 

Aa o (  2EeGm t § Acro 
~-max- 2 ~b-EfE~-Vm] = 2 r~+ (13) 

putting ln(R/r) = r where the suffix c refers to 
the composite. 

The condition for elastic continuity between 
the fibre and matrix to be maintained after the 
formation of the first crack, may be taken to be 
that the additional stress thrown onto the fibres 
should be less than that required to produce a 
shear stress at the crack, ~'max, which is greater 
than ru. Setting A % = (ainu Vm)/Vf and 7"max = 

"ru in Equation 13, this condition may be written 

~mu Vm [r F~ _Vm]~ 
~2~-u [ 2EeGm J (14) 

Putting ru = n ~mu and 2Gm = Era, Equation 14 
reduces to 

Ef Vm 
Ee ~ 4n 2 Vf2r (15) 

A plot of [Vm/(4 r Vf2)] is made in Fig. 3 for 
small values of Vf. Clearly if n = 1 the values of 
(Ef/Ee) required are very large indeed and 
usually unattainable in practice so that the 
expected shear strength of the interface will be 
exceeded, and some debonding must occur. 

For  reinforced cement and n = 1 the 
inequality is obeyed at fibre volume fractions of 

1 0 0 0  

Vm 
4,v, ~ 

I O O -  

n = l  

20-- n=2 

0 0.05 Vf 0"1 

Figure 3 P l o t  o f  Vm/(4 ~b Vr 2) ve r sus  Vf. 

r 

Vf = 0.36 for carbon, Vf = 0.38 for steel and, 
for glass, V~ = 0.50. These values are outside the 
range of practically interesting cements for 
constructional purposes. The compressive 
strength of cement is of  the order of ten times 
greater than the tensile strength and so we might 
assume that Tu may in this case be greater than 
~rmu. For  steel wire-reinforced cement the 
critical volume fraction for Equation 15 to be 
obeyed would then be reduced to 0.09 for n = 2 
and 0.02 for n = 4. The occurrence ofdebonding 
therefore depends sensitively upon the ratio of 
~-,~ to emu, particularly for materials in which ~-u 
is greater than emu. 

7. Partial debonding 
The calculations of Section 6 indicate that in 
many systems the appearance of  the first crack 
in the matrix will lead to some debonding at the 
interface between fibre and matrix. We therefore 
consider the case in which fibres an d  matrix are 
debonded for a certain length and thereafter 
elastically bonded. 

After the formation of  the first crack the 
length of fibre over which debonding occurs will 
depend on the value of ~-', the limiting shear 
stress at the fibre-matrix interface after debond- 
ing. The additional fibre stress at a debonded 
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distance l '  f rom the crack is simply 

2~rr l '  ~-' 
AG 0' = AG o -- ~rr 2 

21' ~-' (16) 
A G  O - -  _ _  

g 

and debonding will continue until l '  is sufficient 
to reduce AG o' so that  ~'max ~< ~'u. Substituting 
the value o f  A % '  f rom Equat ion 16 for AG o in 
Equat ion 13 and putt ing rmax = r~ we obtain 
for  the debonded length 

l '  AGo ~r 
. . . . . .  (17) 
r 2 r '  ~-' r 

The debonded length (l'/r) must always be less 
than (x'/r) in Equat ion 3 because x '  represents 
the length necessary to transfer the breaking load 
into the matrix at  an unbonded  interface. There 
is therefore an upper  limit to A G 0 obtained by 
equating l '  and x '  which is 

Vm 2ru 
/1G0max=Gmu--~Tf- f @ ) ~ r  (18) 

for  which some part  o f  the interface remains 
elastically bonded.  Since A % cannot  be less than 
the first term on the right hand  side o f  Equat ion 
18, the second term represents the range o f  values 
o f  A~0 for which partial debonding occurs. 

To  find the crack spacing when the interface 
is par t  bonded  and par t  debonded we note that  
the total load per unit  area o f  composi te  trans- 
ferred by friction at the surface of  N = Vf/Trr 2 
fibres over distance l '  is (2l' r' Vf)/r and so for 
the matrix to crack again the additional load 

21' -r' 
F = G m u  V m  - -  - -  Vf  (19) 

r 

must  be transferred elastically over a length I o f  
bonded fibre where 

l =  @~ ln ( r ~ r 1 7 6  Gmu Vf (20) 

This result is obtained by substituting l '  f rom 
Equat ion  17 into Equat ion 19 and the result for 
F in place o f  Gmu Vm together with AG 0' f rom 
Equat ion  16 in place o f  A G o in Equat ion  9. The 
min imum crack spacing L is equal to (l' + l) and 
is then 

r / I  G o 

L -  
2 1 "  

using Equat ion  17 for  l' and Equat ion 20 for l. 
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to that for the unbonded case x' as a function of the 
fractional increase in fibre stress over that occurring at 
the first crack, for cement reinforced with 
5 ~ polypropylene, Tu = ainu, r ~/r = 0.54, curve 1 
1 ~ steel, ru ~rmu, r ~j~ = 5.65, curve 2 
1 ~ steel, ru = 2c~ ..... r ~/r = 5.65, curve 3 
5~  steel, Tu Crrnu, r~/r = 4.12, curve 4. 
Upper curves are for ru = r '  and lower curves for 
ru = lOt'. 

In  Fig. 4 the crack spacing under conditions o f  
partial debonding calculated f rom Equat ion 21, is 
compared  with the debonded crack spacing x '  
given by Equat ion 3 for  a range o f  fibre rein- 
forced cements. Practically useful volume frac- 
tions o f  other reinforcements such as glass will 
have values o f  r ,/r within the range covered by 
these examples. For  the maximum value of  ~-' 
equal to ru the load transferred to the matrix will 
increase linearly over distance l '  according to  
Equat ion 2, and then exponentially over the 
remaining distance l with a rate that decreases 
continuously f rom the linear value. The crack 
spacing therefore remains greater t h a n  x' until 
debonding is complete at the value o f  AG o = 
A Gomax given by Equat ion 18. For  ~" < ~-u, dF/dy 
increases at the end of  the  debonded region so 
that  the crack spacing may become less than x '  
and pass through a minimum before AG o = 
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Ae0max I f A e  o is set equal to Aeomax in Equation 
21 by substitution from Equation 18, then L 
equals x' as it should. The crack spacing cannot, 
of course, increase after the minimum is reached 
and in practice the crack spacing will remain 
constant (over the region shown by the broken 
lines) as the debonded length increases to x'. 

With the exception of the lower portion of 
curve 4 in Fig. 4, which corresponds to a rather 
high volume fraction of stiff fibres and an ex- 
tremevalue of ru/r '  the minimum crack spacing is 
either equal to x' (upper curves) or at least 85 
of x'  (lower curves). For  practical purposes, 
therefore, the simple theory should suffice to 
describe the behaviour of fibre-reinforced cement 
unless the fibre-matrix bond strength in shear, 
ru, is much greater than Crmu. 

8, Energetics 
We assume that a crack cannot form in the 
matrix unless the work done by the applied 
stress is greater than the increase in elastic 
strain energy of the composite plus the fracture 
surface work of the matrix per unit area of cross 
section of the composite. For  the fully elastic 
body considered in Section 4 the work done by 
the applied stress is precisely twice the increase in 
strain energy and therefore to find the condition 
for the formation of the first crack, knowing the 
load on the composite, we merely need to calcu- 
late the increase in length of the fibres when a 
crack forms in the matrix. This increase in length 
is due to an increase in load carried by the fibres 
at the crack of A % = (Crmu Vm)/Vf so that after 
failure the length of the specimen increases by 

3 l =  2 ~ d y  = E2 A % e x p -  y d y  
0 

2Ar o 4 -~ 
- E ~  - 2o~ ~ m ~  r 

. . . . .  (22) 
using Equation 5. 

The work done by the applied stress per unit 
area of cross section is Ee em,~ 3l so that a crack 
cannot form unless 

Ee ~mu 2 oeq~ -4- ~ 2ym Vm (23) 

where ym is the fracture surface work of the 
matrix. Writing Equation 23 as an equality we 
have 

27mVmr ~ 2ymVm( 2GmEe )+ 
emu2 -- o~ Ee - r~  Ee r E f  E m  V m }  " 

. . . . .  (24) 

Clearly for a small r, emu can become very large 
and if its value from Equation 24 becomes larger 
than that of the unreinforced matrix there will be 
complete suppression of cracking at the expected 
failure strain of  the matrix. 

Aveston et al [1 ] have considered the energetics 
of formation of  the first crack in the matrix for 
the unbonded case. It is of interest to compare 
the results for the two cases. A simple way to do 
this is to write Equation 21 of Aveston et al in 
the form 

e~rnud _ 67m Vm 
o~Ec x' (25) 

where emua is the (enhanced) failure strain of  the 
completely debonded composite. Then from 
Equations 24, 3 and 25 and the condition for the 
fibre-matrix bond to remain intact after the 
formation of the first crack (Equation 15 with 
n = 1) we get 

6mR 2 O'mu 
- ( 2 6 )  emud 2 3r '  

and so the failure strain wilt be greater for the 
elastic case, provided r ' <  ~mu/3. r '  must be 
less than ru. Section 6 showed that ru must 
generally be greater than Crmu for the elastic case 
to apply. It follows that there will be a large 
difference between the enhanced failure strain of 
the matrix in the two cases of elastic interface 
and debonded interface only if 

r '  ~ crmu/3 
and (27) 

r u  ~ O'mu 

Our present knowledge of the quantities r', 
ru and Crmu for specific systems of matrix and 
fibre is too scanty to carry the discussion further. 

9. Non-parallel fibres 
We have shown that during cracking of the matrix 
the fibre matrix interface is expected to debond, 
and that the limiting crack spacing for large 
strains of the composite correspond to the case 
when the fibre matrix bond is entirely frictional. 
The problem remains of  what modifications to 
the debonded case are needed when the fibres are 
randomly arranged in direction either in a plane 
or in three dimensions. This problem can be 
resolved into two distinct parts: the first is to 
calculate the number of fibres that actually 
bridge a crack, and the second is to determine the 
distance in the direction of the applied stress 
over which the fibres bridging the crack transfer 
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Figure 5 (a) Diagram showing that probability of fibre crossing a crack at angle 0 in a three dimensionally 
random composite increases with decrease in 0. (b) Geometry assumed for a fibre crossing a crack. 

sufficient load to cause further cracking of the 
matrix. 

I f  the fibres are aligned, the number crossing 
unit  area of  a crack is equal to Vs/~r ~ irrespective 
<of whether the fibres are continuous or dis- 
continuous. When the fibres are random in a 
plane it is shown in Appendix 2 that this number 
is reduced to 2/zr(Vf/~r ~) and for a completely 
r andom arrangement in three dimensions to 

To obtain the crack spacing we assume that 
the lengths of  fibre bridging the crack are normal 
to the crack face, as this is the only geometry that 
enables two points in the matrix, A and B 
(Fig. 5b), that were coincident before cracking, 
to remain adjacent to each other as the crack 
opens and thus allow the matrix to remain intact. 
The assumption will apply best for thin and, 
hence, very flexible fibres. In practice there must 
be some crumbling of  the matrix in order that a 
fibre of  diameter comparable with the crack 
width can bend through an angle (90 - 0). In 
addition, the fibre must either undergo some 
plastic deformation or be very weak in shear 
parallel to its axis so as to reduce the large 
bending stresses which would otherwise fracture 
the fibre at A or B when the stress along AB is 
much less than the normal fibre strength [5]. 

Neglecting these effects, the fibres may be 
regarded as passing over a pulley at A and B so 
that the load transferred by each fibre back into 
the matrix on either side of  the crack is the sum 
of  the reaction of  the "pulley" at A which 
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operates close to the crack surface, and the load 
transferred by frictional forces between the fibre 
and matrix. We are grateful to Mr D. K. Hale 
for pointing out to us the existence of this pulley. 

10. Fibres random in a plane 
When the matrix cracks, an additional stress 
equal to (~-/2) (Crm~, Vm)/V~ is placed upon each 
fibre. Since each fibre is considered flexible all 
fibres increase in length elastically by an amount  

�9 V~ E f  - 2 ~ Emu " 

Call x2', = (~r/2) x ' ,  the distance measured along 
the fibre over which the fibres shed this addi- 
tional load due to the action of a shear stress 
? '  at the fibre-matrix interface. At distances 
greater than x'~ f rom the crack the strain in 
fibre and matrix wilt be the same. Each fibre 
therefore exerts a force on the matrix, 2zr r -r' 
x~' sin 0, normal to the crack, where 0 is the 
angle between the fibre and the crack surface. 
The total force per unit area of  crack exerted 
by all fibres is equal to the force per fibre times 
the number of  fibres at the particular angle 
summed for al l  angles, i.e. 

r /2  
s = 2~vr ~-' x ' sin 0 N sin 0 dO 

~/2 , . t0  

= lrr ~' x~' N (29) 

see Appendix 2. 
In addition to the frictional force there is a 
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"pulley" force. The force per fibre resolved 
normal to the crack due to the pulley force is 

~rr 2 ~ (1 - sin 0) 

(see Fig. 5b). Hence the total pulley force which 
equals the force per fibre times the number of 
fibres is, per unit area of the crack, 

7r2rZcrm Vmf]/2 N s i n 0  
F2 - ~ -  V~ (1 - sin 0) ~ dO 

(am Vm I (1 - ~r/4)" (30) = N rrr2 \ Vf ] 

The matrix will crack again at a distance x2' 
from the crack such that the sum of the forces 
(F1 + F~) given by Equations 29 and 30 respect- 
ively, add to Crmu Vm, yielding 

x 2 ' =  ,2 2r '  - 2 

This result (Equation 31) shows that the 
matrix cracks again at a distance from the first 
crack of precisely that distance measured along 
the fibre over which the fibre transfers the ad- 
ditional load to the matrix. This "coincidence" 
arises because the sum of the forces F x and F 2 
per fibre is equal to @-/2) ~'r 2 (O'mu Vm/V~) and 
hence independent of the orientation of the fibre. 

11. Fibres random in three dimensions 
The procedure is the same as for two dimensions 
but the number of fibres crossing unit area of  
crack and running in directions between 0 and 
(0 + dO) to the crack face is Ncos  0d0. The 
final result is 

Vm O'mu r 
' --  2x' (32) X3 mf T' 

Comparing Equations 31 and 32 with Equation 
3, we see that for the debonded case, with fibres 
sufficiently flexible for bonding and shearing 
forces of the type considered by Hing and 
Groves [6] to be neglected, that the minimum 
crack spacing is predicted to be increased from 
that obtained with aligned fibres to about 50 
greater for fibres in a planar mat and by a factor 
of two for fibres running in three dimensions. 

12. Conclusions and discussion 
When the matrix of a continuous fibre-reinforced 
composite fails at a lower strain than the fibres, 
multiple cracking of  the matrix will always result 
as long as the fibres are strong enough to with- 
stand the additional load. If  the fibres are 

discontinuous and fibre debonding occurs, the 
increased loading of the fibres resulting from the 
transfer of load from the matrix will put the 
interfaceintension and so may lead to a low value 
of ~-' and pull-out of the fibres. Multiple crack- 
ing is most easily observed with resin matrices 
when the matrix is cracked by decreasing the 
temperature of a composite with C~m > cq (o~ is 
the linear thermal expansion coefficient) so that 
the matrix contracts around the fibre and a hoop 
stress is produced which puts the interface 
between the fibre and matrix into normal com- 
pression. These experimental conditions were 
used by Cooper and Sillwood [7]. 

Multiple cracking will also be observed when 
there is a strong mechanical bond between the 
fibre and matrix so that the bond strength 
depends ultimately on the shear strength of the 
matrix. If  such a mechanical bond can accommo- 
date a small amount of shear strain without a 
drastic loss of strength, as appears to be the case 
with cement, multiple cracking will still be 
observed even though the fibres have debonded, 
and the situation will be equivalent to the 
frictional bond treated previously. 

For  the purely elastic case to apply, two 
conditions are necessary: the ratio ~'u/emu and 
Vf must be sufficiently high for inequality 15 to 
be satisfied and the fibre must be sufficiently 
tough for the stress concentration at the tip of 
the crack in the matrix not to cause failure of the 
fibre in the plane of the crack (which is some- 
times observed experimentally when brittle 
fibres are well bonded to a brittle matrix). If  these 
conditions are fulfilled the crack spacing as given 
by Equation 9 will be very close and the crack 
opening correspondingly small. Normally, how- 
ever, as the applied stress is increased above that 
necessary to produce the first crack, partial 
debonding will eventually occur and the ultimate 
crack spacing, given by Equation 20 will depend 
on the ratio "ru/r'. In practice, Tu will often be 
limited to the order of ainu and the crack spacing 
will then be close to that given by Equation 3 for 
all reasonable values of ~"/ru. 

For the debonded case the situation is essen- 
tially the same whether the fibres are aligned or 
are in a random configuration, either in a plane 
or in three dimensions. The only difference is 
that the number of cracks per unit length is 
either (2/~-) or �89 that of an aligned composite, 
respectively. Perhaps of greater significance is the 
fact that if the fibres can accommodate the 
bending strains incurred when a fibre crosses a 
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crack at an acute angle, the strength of a brittle 
matrix composite will be related to that of the 
aligned material by the same factors. These are 
much greater than the values of �89 and ~ often 
suggested in the literature on the basis of an 
extension of Cox's elastic analysis [8] to the 
strength of composites, and are also greater than 
the efficiency factors recently proposed by Allen 
[9] and Laws [10]. The work of fracture derived 
from fibre pull-out will be an equally large 
proportion of that attained with an aligned 
composite, and as there will be a further gain 
from the work of bending the fibres through an 
angle, as recently suggested by Hing and Groves 
[6], there would appear to be little to be gained 
with a cross-ply, or even a fully aligned brittle- 
matrix composite, compared with a random two- 
dimensional arrangement, if the aim of reinforce- 
ment is solely t o  increase strength and toughness 
of a brittle matrix without a need to influence the 
elastic modulus. 

The principal limitation to the theory presented 
in Sections 4 to 8 is the neglect of any tensile 
stresses in the matrix in the radial and tangential 
directions with respect to the fibre surface. These 
arise for the simple form taken for the equation 
of equilibrium. It follows that our expression for 
the maximum shear stress at the fibre matrix 
interface is only approximate; it depends on Ef 
and on Gin. Some dependence on the Poisson 
ratios of fibre and matrix must arise and this 
cannot be treated with the present elastic 
solution. Nevertheless the analysis we believe has 
value since using it the physical principles may 
be explored which will govern the behaviour in 
the elastic case and in the partially debonded 
case. 

We also note that a rigorous elastic analysis - 
only possible at present by numerical methods 
and for particular values of the elastic constants 
[11 ] - for the case of a broken fibre in a continu- 
ous matrix yields a value for the shear stres at the 
interface which agrees with the shear lag analysis 
at distances from the end of the fibre greater than 
0.4 of a fibre radius. The radial stresses at the 
interface are found to be very much less than the 
shear stresses. 

The treatment for the effects of non-aligned 
fibres apply in the limit of very thin fibres. In this 
approximation the ratio of  crack spacing for 
aligned fibres, for fibres arranged in a planar mat, 
and for fibres in a three-dimensional felt, of  
1 :(r will apply both in the debonded case 
and in the  fully elastic case, if in the latter the 
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crack spacings for the aligned case, planar mat 
and felt were all made at the same value of A a. 
This follows by comparing Equations 3 and 10 
if the expression for ~'m~x in Equation 13 is 
substituted into Equations 10. The fully elastic 
and debonded cases are the same if ~-' and ~'m~,: 
are interchanged. 

The small difference between the predictions 
for aligned and non-aligned fibres accounts for  
the fact that Aveston et al [1 ] obtained quite good 
agreement between the simple theory developed 
for an aligned composite and experimental 
results for composites containing randomly 
arranged fibres. 
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Appendix 1 
A. Crack spac ing ;  e last ic  case 

Consider an aligned fibrous composite stretched 
in tension parallel to the fibres and let the matrix 
crack at a strain ~mu. When the tensile strain Ee 
of the composite reaches ~mu a crack appears in 
the matrix as in Fig. 6a. We idealize the situa- 
tion as in Fig. 6b and suppose elastic continuity 
maintained at the interface between fibre and 
matrix. We calculate the stress in the fibre by a 
modified shear lag analysis. 

We assume that the tensile strain in the fibre 
and matrix are equal for large values of y and 
that the stress in the fibre is then E, Emu. If  
af(y) is the stress in the fibre at distance y from the 
crack we put 

Act = cr~ -- E~ ~mu (la) 
Then we assume 

dA~ 
dy = H(Vf - IZm) (2a) 

where H is a constant and V, and Vm are the 
y-components of elastic displacement in fibre and 
matrix respectively. Then differentiating Equa- 
tion 2a we have 

dZAa H~ crf d Vm~ 
dy 2 - ~ E, dy f (3a) 

We will assume 

dV~ dCm 
- - ~ m  ( 4 a )  

dy dv 
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Figure 6 Matrix cracking with elastic continuity between fibres and matrix (a) and as assumed in the shear lag 
analysis (b). 

where #In is the average strain in the matrix. 
Since the tensile load supported by all cross 
sections of  the composite must be the same, we 
have 

1 
em --  E m  Vm (Ee Emu - crf g f )  �9 (5a) 

Substituting Equation 5a into 4a and Equation 
4a into 3a and using Equation la we have 

d~Aa 
dy 2 - q~A~ (6a) 

where 
HEe 

q~ - -  E f  E m  Vm 

The general solution of Equation 6a subject to 
the boundary condition Aa = 0 at large y is 

A (r = A o- 0 exp - ,~'(~y (7a) 

where A% is the difference between the stress in 
the fibre at the surface of the crack and that in 
the fibre a long way from the crack. 

To proceed further we need to estimate/4. For 
the cross-sectional geometry shown in Fig. 1 we 
assume that the condition of stress equilibrium in 
the matrix is given simply by 

0~-1v ~-ry 0 (8a) 
01--: + 7 = 

of which a solution is ~-ry r = const, where Zrv is 
the shear stress on planes parallel to the fibres at 
radial distance r. The constant is equal to 
- ~-~ rf where ~-i is the shear stress at the inter- 
face and re the radius of  the fibre. From this 
solution to Equation 8a we have 

dV 
Try r = am drr r = - Ti rf 

where Gm is the shear modulus of  the matrix, 
and so integrating to find V we have 

~-i r f ,  ( R )  
( V f -  V ~ ) =  + ~ - - ~  in rf (%) 

where R is the radial distance f rom the centre of  
the fibre at which the displacement in the matrix 
is equal to the average displacement in the 
matrix. We now note that by a simple force 
balance the shear stress at the interface is related 
to the rate of  change of stress in the fibre by 

re dA~ 
~ - i -  2 dy (10a) 

Substituting for (dAq)/dy from Equation 2a into 
10a and then eliminating ( V f -  Vm) between 
Equations 10a and 9a we have 

2Gm 
H = ( l l a )  

r2f In R/re 

and so 

= I N - ~  Vm/ r[ln (R/r)]-~ (12a) 

writing r for the radius of  the fibre in place of  rr 
in Equation 1 la. 

I f  we substitute for Aa in Equation 10a f rom 
7a we have 

r 
r i =  ~ A % x / ~ e x p ( -  1~y) (13a) 

Appendix 2 

I f  there are N aligned fibres per unit volume, the 
number crossing a plane at angle 0 to the fibres 
per unit area of  that plane is N sin 0. I f  all angles 
0 between 0 and ~r/2 are equally probable then 
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the n u m b e r  of fibres crossing any plane at angle 
between 0 and  (0 + dO) to the plane, per un i t  
area of  the plane, is 

dO 
N sin 0 (zr/2) 

Hence the total  n u m b e r  of fibres crossing un i t  
area of any plane is 

j " ~/~ 2 2N 
N - s i n 0 d 0 = - -  �9 (14a) 

0 "~" "~" 

I f  the fibre directions are randomized  in three 
dimensions the number  of  fibres per unit  volume 
lying at angles between 0 and (0 + dO) to any 
direction is N c o s  0 dO (Fig. 5a) so the number  of 
fibres crossing any plane per uni t  area of that  
plane is 

f~/2 N (15a) N cos 0 sin 0 dO = ~- �9 

In  all cases 

Vf 
N - (16a) 

~rr 2 

where Vf is the volume fraction and  r the radius 
of  a fibre. 
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